Influence of extracellular zinc on M1 microglial activation

نویسندگان

  • Youichirou Higashi
  • Takaaki Aratake
  • Shogo Shimizu
  • Takahiro Shimizu
  • Kumiko Nakamura
  • Masayuki Tsuda
  • Toshio Yawata
  • Tetuya Ueba
  • Motoaki Saito
چکیده

Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc triggers microglial activation.

Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under sev...

متن کامل

Osteopontin Augments M2 Microglia Response and Separates M1- and M2-Polarized Microglial Activation in Permanent Focal Cerebral Ischemia

Background Focal cerebral ischemia induces distinct neuroinflammatory processes. We recently reported the extracellular phosphor-glyco-protein osteopontin (OPN) to directly affect primary microglia in vitro, promoting survival while shifting their inflammatory profile towards a more neutral phenotype. We here assessed the effects of OPN on microglia after stroke in vivo, with focus on infarct d...

متن کامل

Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions.

Globoid cell leukodystrophy (GLD), or Krabbe disease, is a rare and often fatal demyelinating disease caused by mutations in the galactocerebrosidase (galc) gene that result in accumulation of galactosylsphingosine (psychosine). We recently reported that the extracellular matrix (ECM) protease, matrix metalloproteinase-3, is elevated in GLD and that it regulates psychosine-induced microglial ac...

متن کامل

The Apoptotic Effect of Extracellular Zinc Sequestration on HT29/219 and SW742 Cell Lines

Zn (II) is an important regulator of caspase-3, as well as an antioxidant, microtubule stabilizer, growth cofactor, and anti-inflammatory agent. Over the past 30 years, many researchers have demonstrated the important role of Zn (II) in a variety of physiological processes, including growth and development, maintenance and priming of the immune system, and in tissue repair and regeneration. In...

متن کامل

Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017